
		Page
General notes		
Operation		3b.03.00
Properties and areas of application		3b.03.00
Recommendations for design and installation		3b.03.00
Application examples		3b.06.00
Product data sheets		
Multi-plate slipping clutches with hub housing	Series 0600-424/474	3b.07.00
Multi-plate slipping clutches with flange housing	Series 0600-070	3b.08.00
Multi-plate slipping clutches with shoulder housing	Series 0600-072	3b.08.00
Multi-plate starting clutches	Series 0700-000	3b.09.00

Contents

Page Edition 02.2004 EN 3b.01.00

Operation

Properties and areas of application

The safe operation of machines, mechanical plant and their drives depends, to a large extent, on the forces and torques not exceeding the values on which the strength calculations for the particular clutch were based.

However, experience has shown that it is very difficult or impossible to calculate the exact loading for a particular application precisely in advance. In addition there is the risk of unwanted overloading occurring, for example, if stalling takes place. Ortlinghaus slipping and starting clutches have proved themselves to be excellent safety elements throughout the whole area of mechanical engineering for the elimination and dissipation of torque peaks. They provide protection against fracture for gears, gear wheels, shafts and other mechanical elements.

Recommendations for design and installation

When a clutch slips, mechanical energy is converted into heat, which requires to be dissipated either by means of radiation or, where clutches are installed in gearbox housings, by means of cooling oil.

Frictional connection is brought about by springs (1). The setting/adjustment device (2) allows the driving or slipping torque to be varied within certain limits in order to meet the requirements of the particular case of application.

The plates (3) of the clutches are supplied with the friction combinations steel/organic lining for dry running or steel/sintered lining for wet-running.

The permissible period during which slipping may take place depends on the amount of friction heat produced (slipping torque and the relative speed at which the plates slip past each other) and the capacity of the clutch to absorb heat.

When using these clutches for starting purposes, it must be taken into consideration that - despite the presence of the slipping clutch - the maximum output torque will be greater than the slipping torque set on the clutch.

Friction combination

The friction combination in the standard form of execution is steel/organic lining for dry-running. It is essential that the frictional surfaces are kept free of lubricants!

Steel/sintered lining for wet running on request.

Tolerances

For the tolerances for bores and keyways see section 1 "Technical information".

Fig. 1 makes clear the benefits provided by a slipping clutch. If the amplitude of the torque peak to be expected without a slipping clutch M_O and also the ratio of this to the slipping torque M_R are known, the ratio of the maximum torque M_{max} to M_R for a given value of α can be read from the graph. If, for example, $\alpha=0.02$ and if the torque peak (without slipping clutch) M_O is six times the slipping torque M_R , fitting the slipping clutch will reduce the torque peak to just 1.8 times the slipping torque M_R .

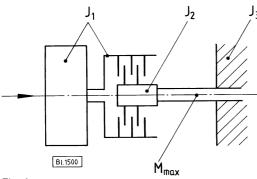
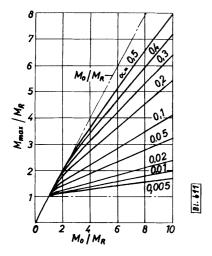



Fig. 1

 M_{max} = Maximum torque at driven shaft M_{O} = Torque peak to be anticipated if no

slipping clutch is used

 M_R = Slipping torque

 $\alpha = \frac{J_2}{J_1 + J_2}$

J₁ = Moment of inertia of driving machine and drive side of slipping clutch

J₂ = Moment of inertia of driven side of slipping clutch

 J_3 = Moment of inertia of the driven side assumed to be inifinitely large

The figure shows that the driven side of the slipping clutch should have a low moment of inertia if the torque peaks to be expected are to be dissipated efficiently.

Slipping control

Multi-plate safety clutches are not recommended for high speed applications unless slip control is provided, since they can quickly overheat. The relative motion between the clutch halves that arises with overload slipping can be used to protect the unit by tripping out the prime mover. This can be done in various ways.

1. Monitoring arrangement with cam and microswitch.

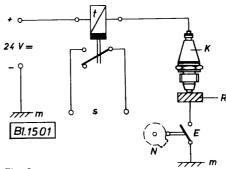


Fig. 2

K = Plug-type brush

R = Slipring

E = Microswitch on inner clutch member

N = Cam on outer clutch member

m = Earth

S = Drive cut-out

t = Time relay

This arrangement within the clutch has the disadvantage that small slipping movements can lead to undesired actuation of the microswitch and thus to the drive being cut out.

2. Slipping control via solenoid switch signal

A safety arrangement which can be applied at an external point relative to the clutch is shown in Fig. 3. This uses signals from a solenoid switch to control a time relay. The arrangement permits slippage control from approx. 5 to 3,000 min⁻¹.

The permanent magnets can also be mounted on the face.

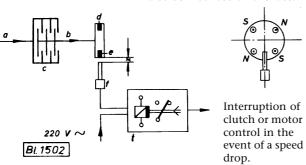


Fig. 3

- a = Input
- b = Output
- c = Slipping clutch
- x = Clearance approx. 10 15 mm d = Permanent magnet, north pole e = Permanent magnet, south pole
- f = Solenoid switch
- t = Time relay

Permanent magnets - north and south poles - are attached to the shaft being monitored in such a way that they pass the solenoid switch with a clearance of 10 to 15 mm. The solenoid switch is actuated on each revolution thereby transmitting pulses to a time relay. The time relay remains energized as long as the period of time between two consecutive pulses remains less than the delay time preset on the relay. As this is about 1 s, the number of north and south poles must be chosen so that the time between consecutive pulses lies within this time as otherwise the relay will de-energize prematurely. If the time relay deenergizes, a hold line to the control contactor is interrupted and the drive is stopped.

In the standard version of the device, the drive will be cut out when the driven side comes to a complete or near complete standstill.

For applications where the driving speed changes, monitoring of the slippage by capturing the input and output side speeds of the clutch provides the greatest safety. Devices with electronic circuits have been developed for this purpose. With these,

proximity-type pulse generators measure the speeds of the input and output sides of the clutch. The two speeds are compared electronically. The pulses are triggered by markers fitted on each of the two sides. The markers may be in the form of cams, vanes, screwheads or holes, it is important that there are equal numbers of these on each side. The system is shown schematically in Fig. 4.

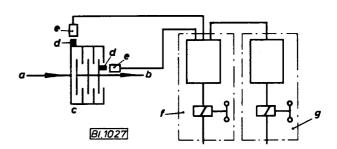


Fig. 4

- a = Input
- b = Output
- c = Slipping clutch
- d = Marker
- e = Sensor
- f = Electronic module 1 for warning
- f = Electronic module 2 for cut-out

If the clutch starts slipping so that a difference in the two speeds arises, electronic module 1 triggers first, causing an acoustic or optical warning signal to be given.

Electronic module 2 cuts out the drive if the period of time set on a time element is exceeded.

A time-controlled bridge is arranged to permit slipping while the machine is being started up.

Application examples

Fig. 1: Slipping clutch, series **0600-474**, fitted between motor and gearbox on separate shafts. The bearings should be positioned as close as possible to the clutch.

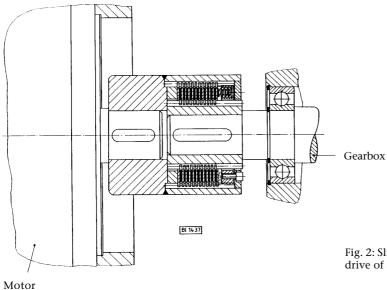
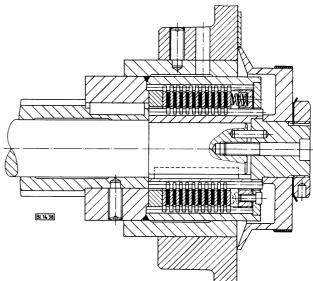
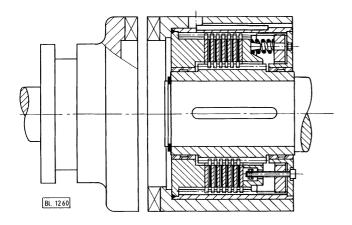
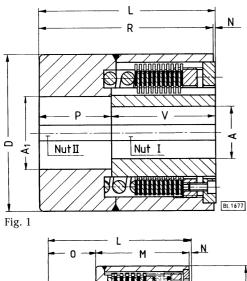
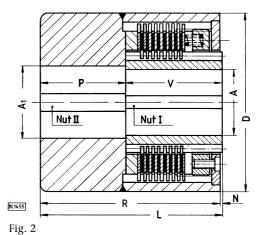
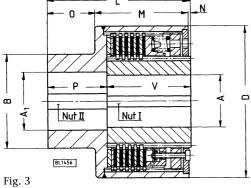


Fig. 2: Slipping clutch, series **0600-474**, fitted in the feed drive of a boring and milling machine.


Fig. 3: Starting clutch, series **0700-070**, used in conjunction with a dog clutch.




General notes	Page	Edition	02.2004
deficial flotes	EN 3b.06.00		

Multi-plate slipping clutches with hub housing

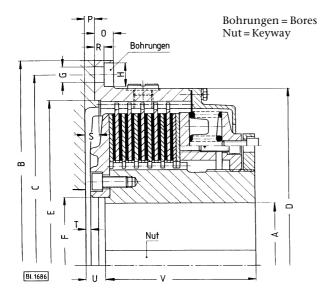
Nut = Keyway Bore A_1 to customer requirements Keyway II to DIN 6885

Series			0600-	424-Size-0.00	09.		0600-474-		
Figure Size-version			07-0.0-092	11- 0.0-091	15-0.0-091	2 23	3 31	3 39	3 4 7
Mstat ¹⁾	-000-09. -010-09. -020-09.	approx. Nm approx. Nm approx. Nm	30 20 10	60 40 20	100 70 35	200 140 70	500 350 180	1000 700 350	1600 1100 550
Mstat min	-020-09.	approx. Nm	9	10	28	0	75	130	180
J	internal external	kgcm ² kgcm ²	3 3	5 25	8 50	20 200	50 250	150 500	350 1350
Weight		approx. kg	2,4	4	5,5	9,8	10,5	18,5	31
ØA	prebored		10	10	15	18	18	28	30
	A max Keyway I	H7 DIN 6885	20 6x2,8	30 8x3,3	40 12x3,3	48 14x2,1	60 18x2,3	70 20x2,7	80 22x5,4
	A Keyway I	H7 DIN 6885	18 6x2,8	28 8x3,3	38 10x3,3	45 14x3,8	45 14x3,8	50 14x3,8	55 16x4,3
Recommended bores ²⁾	A Keyway I	H7 DIN 6885	16 5x2,3	25 8x3,3	35 10x3,3	40 12x3,3	40 12x3,3	45 14x3,8	50 14x3,8
	A Keyway I	H7 DIN 6885	15 5x2,3	22 6x2,8	30 8x3,3	35 10x3,3	35 10x3,3		45 14x3,8
	A Keyway I	H7 DIN 6885	12 4x1,8	20 6x2,8	25 8x3,3	30 8x3,3			
Diameters	B D		- 70	90	100	125	80 150	120 170	130 210
	L M		90	105	110	125	130 88	170 108	195 128
Length dimensions	N O P		0,5 - 35	1 - 45	1 -	1,5 - 55	2 40 50	2 60 70	2 65 80
differisions	R V		89,5 55	104 60	45 109 65	123,5 70	50 - 80	100	80 - 115

 $^{^{1)}}$ Mstat decreases to approx. 2 /3 of the stated values with wet-running.

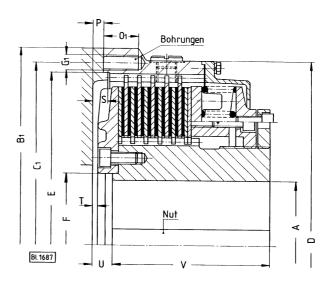
Adequate clearance for a hexagonal socket key must be provided on the clutch face to permit adjustment (see page 3b.06.00, Fig. 1)

Series 0600-424/ 474


Page EN 3b.07.00

Edition 02.2004

²⁾ Bore diameters in bold print are available ex stock.


Multi-plate slipping clutches with flange or shoulder housing

Series 0600-070 with flange housing, closed version

Available for delivery in open version on request, without case cover and closure plug but with peripheral holes: series **0600-071**

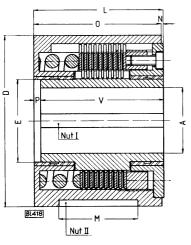
Series 0600-072 with shoulder housing, closed version

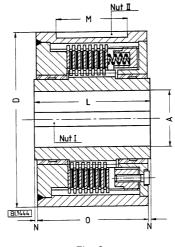
Available for delivery in open version on request, without case cover and closure plug but with peripheral holes: series **0600-073**

Series					Size-0.0091 Size-0.0091			0-070-Size-0. 0-072-Size-0.	
Size			47	55	63	69	75	78	84
Mstat ¹⁾	-000-09. -010-09. -020-09.	approx. Nm approx. Nm approx. Nm	1600 1100 550	2800 2000 1000	6000 4000 2000	10000 7000 3500	18000 12000 6000	23000 16000 8000	30000 20000 10000
Mstat min	-020-09.	approx. Nm	90	700	1200	500	0	0	0
		internal kgm ² external kgm ² external kgm ²	0,055 0,08 0,075	0,158 0,21 0,195	0,34 0,458 0,425	0,75 1,05 0,975	1,975 2,075 1,925	3,5 3,425 3,2	12,75 11,5 10,625
Weight		approx. kg	22	39	61	99	165	224	454
ØA	prebore	1	30	32	48	48	60	60	100
	A max Keyway	H7 DIN 6885	80 22x5,4	80 22x5,4	110 28x6,4	130 32x7,4	170 40x9,4	190 45x10,4	220 50x11,4
Recommended bores ²⁾	A Keyway	H7 DIN 6885	60 18x4,4						
	A Keyway	H7 DIN 6885	55 16x4,3						
Diameters	B B1 C C1 D EH7 F G G1 H Number	of bores	250 225 230 205 210 195 - 10,5 M8 17 6	310 285 285 260 260 245 90 13 M12 19,5	370 335 340 310 315 295 125 15 M12 23,5 6	430 395 400 365 370 345 142 17 M14 25,5 6	500 460 470 430 435 410 200 17 M14 25,5	550 515 520 485 490 465 220 17 M16 25,5	750 700 705 655 650 620 300 26 M24
Length dimensions	O O1 P R S T U V		12 20 5 6 10 - 120	15 25 10 7,5 15 2 12 128	15 25 10 7,5 15 2 15 135	20 35 10 10 15 5 20 155	20 35 10 10 15 5 18	20 45 10 10 15 5 20 195	25 45 15 20 5 20 205

 $^{^{1)}}$ Mstat decreases to approx. 2 /3 of the stated values with wet- running.

Adequate clearance for a hexagonal socket key must be provided on the clutch face to permit adjustment (see page 3b.06.00, Fig. 1)


Series 0600-070/ 072	Page EN 3b.08.00	Edition 02.200	4
----------------------	---------------------	----------------	---


²⁾ Bore diameters in bold print are available ex stock.

Multi-plate starting clutches

Nut = Keyway

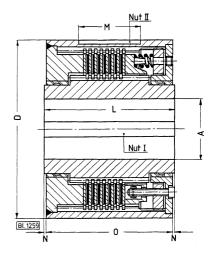


Fig. 1

Fig. 2

Fig. 3

Series			0700-000-Size-0.109.)70-Size-(
Figure Size-version			07-0.1-092	1 11-0.1-091	1 15-0.1-091	2 23	2 25	3 31	3 39	3 47	
Mstat ¹⁾	-001-09. -011-09. -021-09.	approx. Nm approx. Nm approx. Nm	30 20 10	60 40 20	100 70 35	160 100 50	250 180 90	500 350 180	1000 700 350	1600 1100 550	
Mstat min	-021-09.	approx. Nm	9	11	30	28	0	130	130	150	
J	internal external	kgcm ² kgcm ²	3 3	5 25	8 40	20 100	23 150	50 350	150 450	350 1175	
Weight		approx. kg	1,5	2,8	4	6	6,5	12	16	30	
ØA	prebored		10	10	15	18	18	18	22	30	
	A _{max} Keyway I	H7 DIN 6885	20 6x1,6	30 8x2	38 10x3,3	48 14x2,1	48 14x2,1	55 16x2,4	65 18x2,3	80 22x5,4	
	A Keyway I	H7 DIN 6885	18 6x2,8	28 8x3,3	35 10x3,3	45 14x3,8	45 14x3,8	50 14x3,8	50 14x3,8		
Recommended bores ²⁾	A Keyway I	H7 DIN 6885	18 6x1,6	25 8x3,3	32 10x3,3	40 12x3,3	40 12x3,3	45 14x3,8	45 14x3,8		
	A Keyway I	H7 DIN 6885	16 5x2,3	24 8x3,3	30 8x3,3	35 10x3,3	35 10x3,3				
	A Keyway I	H7 DIN 6885	14 5x2,3	20 6x2,8	28 8x3,3	30 8x3,3	30 8x3,3				
Keyway II			8	8 wide, 4 deep)		-	12 breit, 4	t, 4,5 tief		
Diameters	D n6 E		70 -	90 38	100 48	125	135	150	170	210	
Length dimensions	L M N O P V		60 30 0,5 59,5 - -	68 45 1 67 4,5 63	74 45 1 73 4 70	80 50 1,5 77 -	80 50 1,5 77 - -	105 50 0,5 104 -	125 50 0,5 124 -	150 70 1 148 - -	
Version without keyway II; dimensions as above plus dimension D _{max}							nax				
Series			0700-400-Size-0.109.				0700-4	170-Size-(0.1091		
J	inte exte		3 38	5 125	8 200	20 350	23 450	50 1225	150 1875	350 4500	
Weight	app	rox. kg	3,4	6,4	8,3	10,7	11,5	23,5	30	52	
Ø D max			100	130	140	160	170	200	220	270	

 $^{^{1)}}$ Mstat decreases to approx. 2 /3 of the stated values with wet-running.

2) Bore diameters in bold print are available ex stock.

Adequate clearance for a hexagonal socket key must be provided on the clutch face to permit adjustment (see page 3b.06.00, Fig. 1)

Series 0700	Page EN 3b.09.00	Edition 02.20	04
-------------	---------------------	---------------	----